

Concrete / Pictorial / Abstract Maths Calculation Policy

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary. Many variations have been included to provide teachers with a range of tools to support pupils in their grasp of number and calculation. To ensure consistency for pupils, it is important that that the mathematical language used in maths lessons reflects the vocabulary used throughout this policy.

Recommended practice delivering a mastery approach

Warren Wood defines mastery as a deep understanding of mathematical concepts. True mastery aims to develop all children's mathematical understanding at the same pace.

Consistency in language is essential for pupils to understand the concepts presented in mathematics. If other, 'child-friendly' terminology is used, this must be alongside the current terminology recommended by maths specialists.

Concrete, pictorial, abstract (CPA) is an approach to be used with the whole class and teachers should promote each area as equally valid. Manipulatives in particular must not solely be presented as a resource to support the less confident or lower attaining pupils.

The abstract should run alongside the concrete and pictorial stage as this enables pupils to better understand mathematical statements and concepts.

YEAR 1 Addition

Objective / Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part, part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar. 8 1	$\begin{aligned} & 8=5+3 \\ & 5+3=8 \end{aligned}$ Use the part part whole diagram as shown above to move into the abstract. Include missing number questions to support varied fluency: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$ Start with the		$7+4=11$ If I am at seven, how many more do I need to make 10 ? How many more do I add on now?

	bigger number and use the smaller number to make 10. Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10. $9+5=14$ 面苂	
Represent \& use number bonds and related subtraction facts within 20	2 more than 5 .		Include missing number questions: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$ Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7.' ' 8 is 3 more than 5.'

YEAR 2 Addition

Objective／Strategy	Concrete	Pictorial	Abstract								
Adding multiples of ten	Model using dienes and bead strings	Use representations for base ten．	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$								
Use known number facts Part，part whole		$\begin{gathered} 20-\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	Explore commutativity of addition by swapping the addends to build a fact family． Explore the concept of the inverse relationship of addition and subtractions and use this to check calculations． $\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$								
Using known facts		$\begin{aligned} \because+\therefore & =\therefore \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \\ \square+\text { 昭 } & =\text { 昌昭 } \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$								

Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	$17+5=22$ Use part part whole and number line to 2 2 model. 20	$17+5=22$ Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$ Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.
Add a 2 digit number and tens	Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$

Add two 2-digit numbers	Model using dienes, place value counters and numicon	Usennumber line and bridge ten using part whole ifnecessary.	$\begin{gathered} 25+47 \\ 20+5 \quad 40+7 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
			Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values. \square 22
Add three 1-digit numbers		Regroup and draw representation. $+\quad=15$	Combine the two numbers that make/ bridge ten then add on the third.

YEAR 3 Addition

Column Addition with regrouping.	Exchange ten ones for a ten. Model using numicon and place value counters.	Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line	$\begin{aligned} & 20+5 \\ & \frac{40+13}{60+}=73 \\ & \begin{array}{l} \text { Start by partitioning } \\ \text { the numbers before } \\ \text { formal column to show } \\ \text { the exchange. } \end{array} \end{aligned}$
	(1) 0 (1)(1)(10) 00 (1)(1) 00$46+27=73$	6 6 6 6 5 1 6	$\begin{array}{r} 536 \\ +85 \\ \hline \end{array}$

Estimate the answers to questions and use inverse operations to check answers		Use number lines to illustrate estimation.	Building up known facts and using them to illustrate the inverse and to check answers: Estimating $98+17=?$ $100+20=120$	

YEARS $4-6$ Addition			
Objective /Strategy	Concrete	Pictorial	Abstract
Years 4-6 Estimate and use inverse operations to check answers to a calculation		AS per Year 3	
Y4—add numbers with up to 4 digits	Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	 Draw representations using place value grid.	Continue from previous work to carry hundreds as well as tens. Relate to money and measures.
Y5—add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.		$2.37+81.79$ tens ones tents hundrededs 00 000 00009 00000 0 000 000 000 00 00060 0000	

Y6—add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points.	As Y5	As Y5	Insert zeros for place holders. $\begin{array}{r} 23 \cdot 361 \\ 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ 120,579 \end{array} \quad+\begin{array}{r} 99.770 \\ \hline 93 \cdot 300 \\ 21.511 \end{array}$

YEAR 1 SUBTRACTION

Objective /Strategy	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away. $4-2=2$ $6-4=2$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 7-4=3 \\ & 16-9=7 \end{aligned}$
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.		Put 13 in your head, count back 4 . What number are you at?

Objective/Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Include subtracting zero Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. Include missing number problems: $\begin{aligned} & 12-?=5 \\ & 7=12-? \end{aligned}$

| Bar model |
| :--- | :--- | :--- | :--- |
| Including the |
| inverse operations. |

YEAR 2 - SUBTRACTION			
Objective \& Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$20-4=$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	34-13 = 21 Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	$34-28$ Use a bead bar or bead strings to model counting to next ten and the rest.	 Use a number line to count on to next ten and then the rest.	$93-76=17$

YEAR 3 - SUBTRACTION

Objective/ Strategy	Concrete	Pictorial	Abstract
Subtract numbers mentally, including: three digit number + ones three digit number + tens three digit number + hundreds			Vary the position of the answer and question. Expose children to missing number questions and vary the missing part of the calculation. $\begin{gathered} 678=?-1 \\ 688-10=? \\ 678=?-100 \end{gathered}$
Column subtraction without regrouping (friendly numbers)	$47-32$ Use base 10 or Numicon to model		$\begin{gathered} 47-24=23 \\ -40+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.

YEARS 4-6 SUBTRACTION			
Objective /Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	$800 \quad 130 \quad 6$ Useddee płraseľ'take and make' for exchange $500 \quad 80 \quad 2$
Year 5-Subtract with at least 4 digits, including	As Year 4	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{ccc} 7 & 28 & -582=146 \\ { }^{n} & { }^{\top} & u \\ { }^{7} 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$

money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal Up to 3 decimal places			Use zeros for placeholder s.
Year 6-Subtract with increasingly large and more complex numbers and decimal values (up to 3 decimal place).	As Year 4	Children to draw pv counters and show their exchange-see Y3	
YEAR 1 MULTIPLICATION Programme of Study specifies the following objectives, however it does not require the explicit teaching of the m			$-\quad 2128$
Objective / Strategy	Concrete	Pictorial	$\begin{aligned} & \text { for } \\ & \text { placeholder } \end{aligned} \quad-\frac{372 \cdot 5}{6796}$

Soum			
$\begin{array}{l}\text { Counting in } \\ \text { multiples } \\ (2 s, 5 s, 10 s)\end{array}$			

YEAR 2 MULTIPLICATION
Children should be able to recall and use multiplication and division facts for the 2,5 and 10 times times tables.

Objective / Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.
	$40+12=52$		$+\quad=32$
Counting in multiples of $2,3,4$, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$

$1 i 1$	111	111	111								
			3	3	3	3	3	$	$		$4 \times 3=\square$
:---	:---	:---									

Objective / Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity. $\bigcirc \bigcirc \bigcirc O$ $\bigcirc \bigcirc \bigcirc$	$12=3 \times 412=4 \times$ 3 $\begin{aligned} & \begin{array}{l} \text { Use an array to write } \\ \text { multiplication sentences and } \\ \text { reinforce repeated addition. } \end{array} \\ & \\ & \\ & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$

YEAR 3 MULTIPLICATION

Children should be able to recall and use multiplication facts for the 3,4 and 8 times tables

	Fill each row with 126. Add up each column, starting with the ones making any exchanges needed Then you have your answer.	$4 x$	$=2$ 4	20	
Solve problems, including missing number problems, integer scaling problems,					Three times as high, eight times as long $\begin{aligned} & ? \times 5=20 \\ & 20 \div ?=5 \end{aligned}$ 3 hats and 4 coats, how many different outfits?

YEARS 4-6 Multiplication

Objective /Strategy	Concrete	Pictorial	Abstract	
Grid method recap from year 3 for 2 digits $\times 1$ digit Move to multiplying 3 digit numbers by 1 digit. (year 4 expectation)	Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows \|Fill each row with 126 Add up each col les making any exchanges needed	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	Start with multiplying by bers and showing the clea alongside the grid.	digit numddition 4
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This initially done where there is no regrouping. $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside	x 300 20 7 4 1200 80 28 The grid method my be used to show how this relates to a formal written method. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.		is may lead a compact ethod.

Division as sharing
Use Gordon ITPs for
modelling

Objective/Strategy	Concrete	Pictorial				Abstract
Division as sharing	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. Children use bar modelling to show and support understanding.				$12 \div 3=4$

YEAR 2			
Objective/Strategy	Concrete	Pictorial	Abstract

Division as grouping	Use cubes, counters, objects or place value	Continue to use bar modelling to aid solving	How many groups of 6 in 24 ?
	counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rlr} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $7 \times 4=28$ $\begin{aligned} & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \\ & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

[^0]| Objective/Strategy | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Division with remainders. | $14 \div 3=$
 Divide objects between groups and see how much is left over | Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.
 Draw dots and group them to divide an amount and clearly show a remainder.
 Use bar models to show division with remainders.
 remainder:
 $5 s$ in 40?
 mainder:
 rs, when it becomes inefficient to count in single mL orded using known facts. | Complete written divisions and show the remainder using r . |

Divide at least 3 digit
numbers by 1 digit.
ep 1-a remainder in the ones

> | hto |
| :---: |
| 041 R 1 |
| $1 \longdiv { 1 6 5 }$ |

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .
th hto
0400 R7
$8 \longdiv { 3 2 0 7 }$
8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

Long Division

Step 1 continued..

$h \mathrm{t}$
061
$4 \lcm{247}$
$\frac{-4}{3}$

When dividing the ones, 4 goes into 7 one time. Multiply $1 \times 4=4$, write that four under the 7 , and subract. This finds us the remainder of 3 .

Check: $4 \times 61+3=247$

$$
\begin{array}{r}
\text { th h to } \\
0402 \\
\begin{array}{r}
0409 \\
1608
\end{array}
\end{array}
$$

When dividing the ones, 4 goes into 9 two times. Multiply $2 \times 4=8$, write that eight under the 9 , and subract. This finds us the remainder of 1 .

Check: $4 \times 402+1=1,609$

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\mathrm{t} \circ$	$\mathrm{t} \circ$	$\mathrm{t} \circ$
29	29	29
$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$	$2 \longdiv { 5 8 }$
$\underline{-4} 18$	$\frac{-4}{18}$	$\frac{-4}{18}$
	$\underline{-18}$	$\frac{-18}{0}$
Divide 2 into 18. Place 9 into the quotient.	Multiply $9 \times 2=18$, write that 18 under the 18, and subtract.	The division is over since there are no more digits in the dividend. The quotient is 29.

1. Divioe.	2. Multiply \& subtract.	3. Drop down the next digit.
$\frac{{ }^{h t o}}{2 \longdiv { 2 7 8 }}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} \begin{array}{c} h t o \\ 1 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{array} . \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h+0 \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} h+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} 7 \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{gathered} n+0 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18 . Place 9 into the quotient.	$\begin{aligned} & h 10 \\ & 139 \\ & 2 \longdiv { 2 7 8 } \\ & -\frac{2}{07} \\ & -\quad 6 \\ & \hline 18 \\ & -\quad-18 \\ & \hline 0 \end{aligned}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{gathered} h+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline \begin{array}{r} 18 \\ -18 \end{array} \end{gathered}$ There are no more digits to drop down. The quotient is 139 .

Step 2—a remainder in any of the place values

[^0]: YEAR 3 (Greater Deppth Yz)

